SUSSEX COUNTY COMMUNITY COLLEGE

Master College Syllabus

MATH114	CALCULUS II	
COURSE #	COURSE TITLE	CLASSIFICATION
4	4	0
CREDITS	CLASS HOURS	LABHOURS

RECOMMENDED TEXT:

Recommended Text: Calculus of a Single Variable: Early Transcendental Functions, 6th ed.

Author: Larson/Edwards
Publisher: Cengage, 2015
ISBN: 9781285774794

Graphing Calculator: TI-83, TI-83 Plus, or TI-84

CATALOG DESCRIPTION:

This course is the second semester of a three semester sequence of introductory calculus. Topics include integration techniques, applications of integration, infinite series, parametric equations, and polar coordinates.

PREREQUISITES: MATH113: Calculus I (Grade of C)

TOPICS TO BE INCLUDED:

- A. Differential Equations
 - 1. Growth and Decay
 - 2. Separation of Variables
- B. Applications of Integration
 - 1. Area of a Region Between Two Curves
 - 2. Volume: The Disk Method/The Shell Method
 - 3. Arc length and Surfaces of Revolution
 - 4. Work
- C. Integration Techniques and Improper Integrals
 - 1. Basic Integration Rules
 - 2. Integration by Parts
 - 3. Trigonometric Integrals
 - 4. Trigonometric Substitution
 - 5. Partial Fractions
 - 6. Indeterminate Forms and L'Hopital's Rule
 - 7. Improper Integrals
- D. Infinite Series
 - 1. Sequences
 - 2. Series and Convergence
 - 3. The Integral Test and P-Series
 - 4 Comparisons of Series/Alternating Series
 - 5. The Ratio and Root Tests
 - 6. Taylor Polynomials
 - 7. Power Series
 - 8. Taylor Series
- E. Parametric Equations and Polar Coordinates
 - 1. Plane curves and Parametric Equations
 - 2. Polar Coordinates and Polar Graphs

3. Polar Equations of Conics and Kepler's Laws

COURSE COMPETENCIES/LEARNING OUTCOMES:

In a manner deemed appropriate by the instructor and approved by the department, students should demonstrate the ability to:

- 1. Use algebraic techniques such as trigonometric substitutions, partial fractions, and by parts, to evaluate integrals. (GE2)
- 2. Utilize integration techniques to solve problems involving volumes and surface areas of solids of revolution and arc length. (GE2)
- 3. Use the concept of limit to evaluate improper integrals. (GE2)
- 4. Test infinite series for convergence and or divergence. (GE2)
- 5. Use Taylor polynomials to estimate function values. (GE2)
- 6. Operate in alternate reference frames including polar and parametric coordinates.

MATH114

Rev. Books 7/2014FD